Multiparameter E_0 -semigroups

 $\mathsf{S}.\mathsf{Sundar}$

December 8, 2019

Multiparameter E_0 -semigroups

Let $P \subset \mathbb{R}^d$ be a closed convex cone. We assume P is spanning, i.e. $P - P = \mathbb{R}^d$ and P is pointed, i.e. $P \cap -P = \{0\}$.

Let $P \subset \mathbb{R}^d$ be a closed convex cone. We assume P is spanning, i.e. $P - P = \mathbb{R}^d$ and P is pointed, i.e. $P \cap -P = \{0\}$.

Definition

By an E₀-semigroup over P on B(\mathcal{H}), we mean a family $\alpha := \{\alpha_x\}_{x \in P}$ such that

(1) for every $x \in P$, α_x is a unital normal endomorphism of $B(\mathcal{H})$,

(2) for
$$x, y \in P$$
, $\alpha_x \circ \alpha_y = \alpha_{x+y}$, and

(3) for $A \in B(\mathcal{H})$ and $\xi, \eta \in \mathcal{H}$, the map $P \ni x \to \langle \alpha_x(A)\xi | \eta \rangle \in \mathbb{C}$ is continuous.

We identify E_0 -semigroups acting on different Hilbert spaces if they are unitarily equivalent.

The basic equivalence relation in the theory of E_0 -semigroups is that of cocycle conjugacy.

Definition

Let $\alpha := {\alpha_x}_{x \in P}$ be an E_0 -semigroup on $B(\mathcal{H})$. By an α -cocycle we mean a strongly continuous family of unitaries ${U_x}_{x \in P}$ such that $U_x \alpha_x(U_y) = U_{x+y}$. Let $U := {U_x}_{x \in P}$ be an α -cocycle. Define for $x \in P$,

$$\beta_x(.) = U_x \alpha_x(.) U_x^*.$$

Then $\beta := {\{\beta_x\}_{x \in P} \text{ is an } E_0\text{-semigroup on } B(\mathcal{H}). \text{ Such an } E_0\text{-semigroup is called a cocycle perturbation of } \alpha$.

Cocycle conjugacy is an equivalence relation.

A (10) × A (10) × A (10)

Examples

Let us recall the symmetric Fock space and the Weyl operators. For a Hilbert space \mathcal{H} , $\Gamma(\mathcal{H})$ denotes the symmetric Fock space. For $u \in \mathcal{H}$, let

$$e(u):=\sum_{n=0}^{\infty}\frac{u^{\otimes n}}{\sqrt{n!}}.$$

We have the following.

- **1** The set $\{e(u) : u \in \mathcal{H}\}$ is linearly independent and total in $\Gamma(\mathcal{H})$.
- 2 For $u, v \in \mathcal{H}$, $\langle e(u) | e(v) \rangle = e^{\langle u | v \rangle}$.

Examples

Let us recall the symmetric Fock space and the Weyl operators. For a Hilbert space \mathcal{H} , $\Gamma(\mathcal{H})$ denotes the symmetric Fock space. For $u \in \mathcal{H}$, let

$$e(u):=\sum_{n=0}^{\infty}\frac{u^{\otimes n}}{\sqrt{n!}}.$$

We have the following.

• The set $\{e(u) : u \in \mathcal{H}\}$ is linearly independent and total in $\Gamma(\mathcal{H})$.

2 For
$$u, v \in \mathcal{H}$$
, $\langle e(u) | e(v) \rangle = e^{\langle u | v \rangle}$

For $u \in \mathcal{H}$, there exists a unique unitary operator denoted W(u) on $\Gamma(\mathcal{H})$ such that

$$W(u)e(v) := e^{-\frac{||u||^2}{2} - \langle u|v\rangle}e(u+v).$$

An important fact is that the von-Neumann algebra generated by $\{W(u) : u \in \mathcal{H}\}$ is σ -weak dense in $B(\Gamma(\mathcal{H}))$.

Proposition

Let $V := (V_x)_{x \in P}$ be a strongly continuous semigroup of isometries on \mathcal{H} . Then there exists a unique E_0 -semigroup $\alpha^V := {\alpha_x}_{x \in P}$ such that

$$\alpha_{\mathsf{x}}(\mathsf{W}(\mathsf{u}))=\mathsf{W}(\mathsf{V}_{\mathsf{x}}\mathsf{u})$$

for $x \in P$ and $u \in H$.

The E_0 -semigroup α^V is called the CCR flow associated to the isometric representation V.

The basic theory stays intact yet there are significant differences. Let $\alpha := {\alpha_x}_{x \in P}$ be an E_0 -semigroup. For $x \in P$, let

$$E(x) := \{ T \in B(\mathcal{H}) : \alpha_x(A)T = TA \ \forall A \in B(\mathcal{H}) \}.$$

Then

- (1) For $x \in P$, E(x) is a separable Hilbert space where the inner product is given by $\langle S|T \rangle = T^*S$.
- (2) The map $E(x) \otimes E(y) \ni S \otimes T \to ST \in E(x+y)$ is a unitary.

The bundle of Hilbert spaces $\coprod_{x \in P} E(x)$ with its associative product is called the product system of α and is denoted \mathcal{E}_{α} .

The main result of Murugan's thesis is the following extension of Arveson's bijection between product systems and E_0 -semigroups in the multivariate case.

The main result of Murugan's thesis is the following extension of Arveson's bijection between product systems and E_0 -semigroups in the multivariate case.

Theorem

(1) Two E_0 -semigroups α and β are cocycle conjugate if and only if \mathcal{E}_{α} and \mathcal{E}_{β} are isomorphic.

The main result of Murugan's thesis is the following extension of Arveson's bijection between product systems and E_0 -semigroups in the multivariate case.

Theorem

- (1) Two E_0 -semigroups α and β are cocycle conjugate if and only if \mathcal{E}_{α} and \mathcal{E}_{β} are isomorphic.
- (2) Any "abstract product system" is isomorphic to a product system of an E₀-semigroup.

The following are some of the differences between the 1-parameter theory and the multiparameter theory.

- (1) Decomposable product systems need not necessarily have a unit.
- (2) The opposite of a CCR flow need not be cocycle conjugate to itself.
- (3) The CAR and CCR flows need not be the same. (R. Srinivasan)

Let $\alpha := {\alpha_x}_{x \in P}$ be an E_0 -semigroup and $E := {E(x)}_{x \in P}$ be its product system. For $x, y \in \mathbb{R}^d$, we write $x \le y$ if $y - x \in P$.

Definition

(1) Let $x \in P$. A vector $u \in E(x)$ is called **decomposable** if given $y \le x$ there exist $v \in E(y)$, $w \in E(x - y)$ such that u = vw. We denote the set of decomposable vectors by D(x).

Let $\alpha := {\alpha_x}_{x \in P}$ be an E_0 -semigroup and $E := {E(x)}_{x \in P}$ be its product system. For $x, y \in \mathbb{R}^d$, we write $x \le y$ if $y - x \in P$.

Definition

- (1) Let $x \in P$. A vector $u \in E(x)$ is called **decomposable** if given $y \le x$ there exist $v \in E(y)$, $w \in E(x y)$ such that u = vw. We denote the set of decomposable vectors by D(x).
- (2) The product system E is said to be decomposable if
 - for $x, y \in P$, $D(x)D(y) \subset D(x+y)$, and
 - for $x \in P$, D(x) is total in E(x).

Suppose $P = [0,\infty)$. Arveson's ground breaking work says that the CCR functor

$$V \to \alpha^V$$

is a bijection between the set of pure isometric representations and decomposable E_0 -semigroups.

Suppose $P = [0, \infty)$. Arveson's ground breaking work says that the CCR functor

$$V \to \alpha^V$$

is a bijection between the set of pure isometric representations and decomposable E_0 -semigroups.

Thus in the 1-parameter case a decomposable product system have units in abundance. By a unit of a product system E, we mean a **nowhere vanishing multiplicative measurable cross section** of E. This phenomenon is no longer true in the multiparameter context.

In the multiparameter case, we have the following.

Theorem (SS)

- (1) The CCR functor $V \to \alpha^V$ is injective.
- (2) The range of the above functor is precisely the set of decomposable E₀-semigroups which have a unit.
- (3) There are indeed uncountably many examples of decomposable E₀-semigroups which do not have a unit.

Assume $d \ge 2$. Let $\Omega^* := \{\mu \in \mathbb{R}^d : \langle \mu | x \rangle > 0, x \in P \setminus \{0\}\}$. Fix $\lambda, \mu \in \Omega^*$ be given. Let $\{S_t\}_{t\ge 0}$ be the 1-parameter shift semigroup on $L^2(0,\infty)$. For $a \in P$, let $V_a := S_{\langle \mu | a \rangle}$. Then $V := (V_a)_{a \in P}$ is an isometric representation of P on $L^2(0,\infty)$.

Let *E* be the product system associated to the CCR flow α^V . Set $\overline{E} := E$ and define a new product rule as follows: for $S \in \overline{E}(x)$, $T \in \overline{E}(y)$, let

$$S.T = SW(\langle \lambda | x \rangle \mathbb{1}_{(0,\langle \mu | y \rangle)})T.$$

Then \overline{E} with the product defined above is a decomposable product system. We denote this by $\overline{E}_{\lambda,\mu}$ to stress the dependence of λ and μ .

Theorem

The following are equivalent.

(1) The product system $\overline{E}_{\lambda,\mu}$ has a unit.

(2) λ and μ are scalar multiplies of each other.

э

Theorem

The following are equivalent.

(1) The product system $\overline{E}_{\lambda,\mu}$ has a unit.

(2) λ and μ are scalar multiplies of each other.

Theorem

The product systems $\overline{E}_{\lambda,\mu_1}$ and $\overline{E}_{\lambda,\mu_2}$ are isomorphic if and only if μ_1 and μ_2 are scalar multiplies of each other.

Thus there are uncountably many examples of decomposable E_0 -semigroups which do not admit a unit.